Trabajo Final

Julián Avila-Jiménez

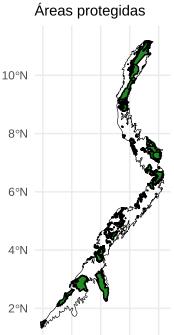
2025-08-27

Contents

0.1	Introducción	1
0.2	Metodología	1
0.3	Resultados	2
0.4	Discusión	3
0.5	Conclusión	3

0.1 Introducción

El Bosque Montano de la Cordillera Oriental en Colombia es un corredor biológico clave que conecta ecosistemas andinos y amazónicos, sosteniendo procesos evolutivos y dinámicas ecológicas esenciales. No obstante, la expansión agrícola, ganadera y urbana ha fragmentado severamente su cobertura, interrumpiendo la conectividad funcional del paisaje. Esta fragmentación limita el flujo génico, la movilidad de especies y la provisión de servicios ecosistémicos como regulación hídrica y almacenamiento de carbono. Mantener y restaurar la conectividad en este mosaico de hábitats es crucial para garantizar la persistencia de la biodiversidad, la resiliencia frente al cambio climático y la integridad ecológica del territorio [@].


0.2 Metodología

Se selecionó como área de estudio el Bosque montano de la cordillera oriental en Colombia, que es un ecosistema de gran interés ya que es el primer obstáculo que enfrentan los vientos alisios que recogen la humedad de la orinoquia. Es un área con una alta biodiversidad que enfrenta amenaza de deforestación.

Se calcularon las estadísticas a nivel de paisaje definiendo el borde a partir de una distancia de 500 m del límite de los parches (Haddad et al. 2015). Para el análisis de las áreas protegidas dentro del paisaje escogido, la ecorregión de Bosque Montano de la Coordillera Oriental, se calculó el índice ProtCon.

0.3 Resultados

Bosque Montano de la Coordillera Oriental

76°W75°W74°W73°W72°W

Áreas protegidas: UNEP-WCMC & IUCN. Ecoregiones: Dinerstein, E., et al. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience, 67(6): 534-545.

0.3.1 Estadisticas de Paisaje

Metric	Value
Patch area (ha)	2068810.2979
Number of patches	100.0000
Size (mean)	20688.1030
Patches < minimum patch area	5.0000
Patches < minimum patch area (%)	0.0053
Total edge	9358.0400
Edge density	0.0045
Patch density	0.0015
Total Core Area (ha)	1679025.2391
Cority	0.8000
Shape Index (mean)	0.2243
FRAC (mean)	0.8981
MESH (ha)	43116.1908

Tenemos un área total de 2.0688103×10^6 ha entre los 100 parches identificados, con un tamaño promedio de 2.0688103×10^4 ha. En total tenemos 1.6790252×10^6 ha de área de núcleo y 9358.04 ha de borde.

0.3.2 Calculo índice ProtCon

Index	Value	ProtConn indicator	Percentage
EC(PC)	812025.47	Prot	29.169
PC	1.4300e-02	Unprotected	70.831
Maximum landscape attribute	6802079.79	ProtConn	11.938
Protected surface	1984122.00	ProtUnconn	17.231
		RelConn	40.926
		ProtConn_Prot	86.907
		ProtConn_Trans	0.000
		ProtConn_Unprot	13.093
		ProtConn_Within	63.291
		ProtConn_Contig	36.709
		ProtConn_Within_land	7.556
		ProtConn_Contig_land	4.382
		ProtConn_Unprot_land	1.563
		ProtConn_Trans_land	0.000

El análisis ProtConn nos muestra que el 29.1693% de la ecorregión del Bosque Montano de la Coordillera Oriental se encuentra protegido aunque solo 11.9379% se encuentra protegido y conectado. La meta de "áreas bien protegidas", del Marco Mundial de Biodiversidad Kunming - Montreal, no se cumple (la meta es del 30% de areas protegidas y conectadas).

0.4 Discusión

El sistema de áreas protegidas en la Cordillera oriental es de vital importancia para la protección de la biodiversidad en Colombia debido a la alta riqueza de especies que alberga la región andina y las significativas amenazas que enfrenta.

En la Cordillera Oriental, los bosques montanos están parcialmente resguardados por parques como Chingaza, Sumapaz y Serranía de los Yariguíes, dentro del SINAP y de sistemas regionales (SIRAP). Estos parques conservan bosques andinos/subandinos y páramos clave para agua y biodiversidad, pero permanecen aislados entre sí por matrices antrópicas, lo que limita la conectividad funcional.

Los análisis muestran que el sistema de áreas protegidas presentes en la cordillera oriental son fundamentales en la protección de la biodiversidad.

El porcentaje de área protegida dentro de la ecorregión es relativamente alto, aunque no cumple con la condición de ser área protegida y bien conectada.

0.5 Conclusión

Las áreas protegidas dentro de la ecorregión de Bosque Montano de la Coordillera Oriental en Colombia son muy importantes en la conservación de la biodiversidad, estas áreas representan cerca del 29 % del área total del paisaje aunque están poco conectadas. La prioridad en este contexto estaria dada por la necesidad de conectar las areas protegidas existentes.

llaborado en			

Е

RMarkdown

Ultima actualización "01 septiembre, 2025".